skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ayan, Bugra"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Microgravity has been shown to lead to both muscle atrophy and impaired muscle regeneration. The purpose was to study the efficacy of microgravity to model impaired muscle regeneration in an engineered muscle platform and then to demonstrate the feasibility of performing drug screening in this model. Engineered human muscle was launched to the International Space Station National Laboratory, where the effect of microgravity exposure for 7 days was examined by transcriptomics and proteomics approaches. Gene set enrichment analysis of engineered muscle cultured in microgravity, compared to normal gravity conditions, highlighted a metabolic shift toward lipid and fatty acid metabolism, along with increased apoptotic gene expression. The addition of pro-regenerative drugs, insulin-like growth factor-1 (IGF-1) and a 15-hydroxyprostaglandin dehydrogenase inhibitor (15-PGDH-i), partially inhibited the effects of microgravity. In summary, microgravity mimics aspects of impaired myogenesis, and the addition of these drugs could partially inhibit the effects induced by microgravity. 
    more » « less
  2. Volumetric muscle loss (VML) is associated with irreversibly impaired muscle function due to traumatic injury. Experimental approaches to treat VML include the delivery of basic fibroblast growth factor (bFGF) or rehabilitative exercise. The objective of this study was to compare the effects of spatially nanopatterned collagen scaffold implants with either bFGF delivery or in conjunction with voluntary exercise. Aligned nanofibrillar collagen scaffold bundles were adsorbed with bFGF, and the bioactivity of bFGF-laden scaffolds was examined by skeletal myoblast or endothelial cell proliferation. The therapeutic efficacy of scaffold implants with either bFGF release or exercise was examined in a murine VML model. Our results show an initial burst release of bFGF from the scaffolds, followed by a slower release over 21 days. The released bFGF induced myoblast and endothelial cell proliferation in vitro. After 3 weeks of implantation in a mouse VML model, twitch force generation was significantly higher in mice treated with bFGF-laden scaffolds compared to bFGF-laden scaffolds with exercise. However, myofiber density was not significantly improved with bFGF scaffolds or voluntary exercise. In contrast, the scaffold implant with exercise induced more re-innervation than all other groups. These results highlight the differential effects of bFGF and exercise on muscle regeneration. 
    more » « less
  3. null (Ed.)
  4. Three-dimensional (3D) bioprinting is an appealing approach for building tissues; however, bioprinting of mini-tissue blocks (i.e., spheroids) with precise control on their positioning in 3D space has been a major obstacle. Here, we unveil “aspiration-assisted bioprinting (AAB),” which enables picking and bioprinting biologics in 3D through harnessing the power of aspiration forces, and when coupled with microvalve bioprinting, it facilitated different biofabrication schemes including scaffold-based or scaffold-free bioprinting at an unprecedented placement precision, ~11% with respect to the spheroid size. We studied the underlying physical mechanism of AAB to understand interactions between aspirated viscoelastic spheroids and physical governing forces during aspiration and bioprinting. We bioprinted a wide range of biologics with dimensions in an order-of-magnitude range including tissue spheroids (80 to 600 μm), tissue strands (~800 μm), or single cells (electrocytes, ~400 μm), and as applications, we illustrated the patterning of angiogenic sprouting spheroids and self-assembly of osteogenic spheroids. 
    more » « less
  5. null (Ed.)
  6. Abstract Metastatic breast cancer is one of the deadliest forms of malignancy, primarily driven by its characteristic micro‐environment comprising cancer cells interacting with stromal components. These interactions induce genetic and metabolic alterations creating a conducive environment for tumor growth. In this study, a physiologically relevant 3D vascularized breast cancer micro‐environment is developed comprising of metastatic MDA‐MB‐231 cells and human umbilical vein endothelial cells loaded in human dermal fibroblasts laden fibrin, representing the tumor stroma. The matrix, as well as stromal cell density, impacts the transcriptional profile of genes involved in tumor angiogenesis and cancer invasion, which are hallmarks of cancer. Cancer‐specific canonical pathways and activated upstream regulators are also identified by the differential gene expression signatures of these composite cultures. Additionally, a tumor‐associated vascular bed of capillaries is established exhibiting dilated vessel diameters, representative of in vivo tumor physiology. Further, employing aspiration‐assisted bioprinting, cancer–endothelial crosstalk, in the form of collective angiogenesis of tumor spheroids bioprinted at close proximity, is identified. Overall, this bottom–up approach of tumor micro‐environment fabrication provides an insight into the potential of in vitro tumor models and enables the identification of novel therapeutic targets as a preclinical drug screening platform. 
    more » « less
  7. Abstract The heterogeneous and anisotropic articular cartilage is generally studied as a layered structure of “zones” with unique composition and architecture, which is difficult to recapitulate using current approaches. A novel hybrid bioprinting strategy is presented here to generate zonally stratified cartilage. Scaffold‐free tissue strands (TSs) are made of human adipose‐derived stem cells (ADSCs) or predifferentiated ADSCs. Cartilage TSs with predifferentiated ADSCs exhibit improved mechanical properties and upregulated expression of cartilage‐specific markers at both transcription and protein levels as compared to TSs with ADSCs being differentiated in the form of strands and TSs of nontransfected ADSCs. Using the novel hybrid approach integrating new aspiration‐assisted and extrusion‐based bioprinting techniques, the bioprinting of zonally stratified cartilage with vertically aligned TSs at the bottom zone and horizontally aligned TSs at the superficial zone is demonstrated, in which collagen fibers are aligned with designated orientation in each zone imitating the anatomical regions and matrix orientation of native articular cartilage. In addition, mechanical testing study reveals a compression modulus of ≈1.1 MPa, which is similar to that of human articular cartilage. The prominent findings highlight the potential of this novel bioprinting approach for building biologically, mechanically, and histologically relevant cartilage for tissue engineering purposes. 
    more » « less